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ABSTRACT

When co-existing gas and liquid phases of pure fluid are heated through their critical

point, large scale density fluctuations make the fluid extremely compressible, expandable,

and slows the diffusive transport. These properties lead to perfect wetting by the liquid

phase (zero contact-angle) near the critical temperature TC. We have found experimentally,

however, that when the system's temperature T is being increased to TC, so that it’s slightly

out of equilibrium, the apparent contact-angle is very large (up to 110º), and the gas appears

to “wet” the solid surface. These experiments were performed and repeated on several

missions on the Mir space station using the Alice-II instrument, to suppress buoyancy driven

flows and gravitational constraints on the liquid-gas interface. These unexpected results are

robust, i.e., they are observed either under continuous heating (ramping) or stepping by

positive temperature quenches, for various morphologies of the gas bubble and in different

fluids (SF6 and CO2). We consider as possible causes of this phenomenon both a surface-

tension gradient, due to a temperature gradient along the interface, and the vapor recoil

force, due to evaporation. It appears that the vapor recoil force has a more dominant

divergence and explains qualitatively the large apparent contact-angle far below TC.

KEY WORDS: contact -angle, surface tension, critical exponent, thermal-capillary flow,

Marangoni flow, principal axis, vapor recoil
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INTRODUCTION

When a coexisting liquid-gas mixture of a single species fluid is heated into the gas

phase a complex process of fluid dynamics, heat transfer, and interfacial phenomena usually

occurs [1]. This process, that is often called boiling, is important in many applications

because of the large heat transfer that it can facilitate so that many types of heat transfer

technology use this process. Many of these complications are caused by the buoyancy from

gravity that lift the gas bubbles that nucleate on a hot surface. Near the liquid-gas critical

point material and thermal properties that play an important roll in the boiling process such

as the surface tension vary considerably with temperature [2]. These properties vary

according to well-known universal power laws that either converge or diverge (e.g., surface

tension goes to zero) and lead to perfect wetting by the liquid phase (zero contact-angle)

near the critical temperature TC [3]. In a boiling process, we can expect a perfectly wetted

wall to dry from evaporation resulting in liquid-gas-solid contact lines. The same physics

that makes perfect wetting in equilibrium will result in a boundary condition of zero contact-

angle when heat is applied. In the following we report on observations of a single bubble

in a thin constant mass cell that is filled with fluid very close to its critical density. This thin

cell produces a considerable constraint on the bubble and allows the entire bubble to be

observed as the heat is applied. As the liquid-gas mixture is heated toward the critical point,

the diverging and conversing material properties produce a large effect on the bubble shape.

RESULTS

In these experiments, a thin layer of SF6 or CO2 was sandwiched between two

sapphire windows and surrounded by a copper housing in the optical cell shown in Figure

1. Figures 2and 3 show the results from a typical run where the cell is heated linearly in time

to a temperature greater than the critical temperature TC, while the liquid-gas interface was

visualized through light transmission normal to the windows. Figure 3 shows several cell
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images obtained during the heating. Because the contact-angle is zero near the critical point,

the liquid-gas meniscus between the two parallel windows forms a semi-circular interface

in the plane perpendicular to the windows. The interface appears dark in the images because

the liquid-gas meniscus refracts the normally incident light away from the cell axis. We

have verified by a ray-tracing model that the all of the normally incident light on the

meniscus is refracted out of the field of view. This shows that in normally incident light, the

dark region measures the radius of the semi-circular meniscus.

Figure 1. Sample cell. Shown is the sample cell in terrestrial gravity filled with SF6 fluid.

The meniscus between the co-existing liquid and gas phases below the critical point can be

seen. The average density exceeds the critical density by 0.3% ±0.01%. The fluid volume

(12.000 mm diameter, 1.664 mm thickness) is contained between two sapphire windows and

a CuBeCo alloy housing.

These results were obtained and repeated using several samples of both SF6 and CO2

at different cell aspect ratios and heating protocols (ramping rates and quenches) on several
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French/Russian (Cassiopée and Pegase) and French/American (GMSF) missions on the Mir

space station using the Alice-II instrument [4]. This instrument is specially designed to

obtain high precision temperature control (stability of ≈10 µK over 50 hours, repeatability

of ≈40µK over 7 days). To place the samples near the critical point, constant mass cells are

prepared with a high precision density, to 0.02%, by observing the volume fraction change

of the cells as a function of temperature on the ground [5]. Two cylindrical sapphire

windows 12mm in diameter and 90mm long are pressed into a copper block with a

corresponding cylindrical hole and glued to the copper at the sides of the sapphire. This

method avoids the unknown volume associated with o-rings, etc., allowing the above high

precision density measurements to be verified. Similar ground based experiments were done

before these experiments, yielding completely different results [5]. In this case the interface

is horizontal except very near a wall.

Figure 2. Plots of the contact angles as a function of temperature and the temperature of the

cell as a function of time. The critical temperature of SF6 is Tc=45.54°C as shown. The mean

value of dT/dt at Tc is about 8.4mK/s. Also shown are points where the images of Figure 3

were taken with the corresponding letter labels.
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Figure 3. Contact angle and bubble shape. Shown is a series of images of the bubble at

various temperatures indicated in Figure 2. The change in the contact angle and bubble

shape is clearly seen. The first row of images shows that the bubble distortion and contact

angle changes occur even far below the critical point. The second row of images illustrates

the rapid changes that occur close to the critical point. The last row of images shows a

density gradient that replaces the interface above the critical temperature.

In our system the liquid wets the solid, so that the initial state of our system before

heating is a flat bubble constrained by the two windows and the cell edge. The initial off-

center position of the bubble, with part of the bubble touching the copper ring, occur

because the cell windows are not exactly parallel and constrain the bubble to press against

the ring. We can estimate the tilt angle, θ, between the windows from the mechanical

precision of the cell manufacturing process and it does not exceed 0.3°. In thicker cells when

the bubbles are not pressed against the ring or when the bubble is constrained to not touch
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the side-wall, no similar bubble deformation is observed. 

Figures 2 and 3 show that as the critical point is approached the gas region spreads

along the copper side-wall. Because the curvature on a large portion of the bubble is

constant, we can extrapolate it to the wall to define an apparent contact angle and this

apparent contact-angle increases. The dark region that measures the meniscus radius does

not appear to be significantly effected except at the side-wall where it disappears. Figures

2 and 3 show that there is a significant bubble deformation quite far below the critical

temperature TC. Near the critical temperature the gas has spread over nearly half the copper

side-wall. The apparent contact-angle becomes so large that the gas phase appears to "wet"

a large portion of the cell surface. When crossing the critical point, as shown in images D-H

of Figure 3, the vapor bubble looses its convexity and rapidly evolves. At T ≈ TC, there is

no latent heat and no surface tension so that the interface becomes a density gradient. This

is shown in the last several images of Figure 3.

DISCUSSION

Figures 2 and 3 show that there is significant bubble deformation below TC where

the surface tension is still relatively large and the shape may be analyzed by quasi-static

arguments. If a temperature change, δT, appears along the liquid-gas interface, it will create

a surface tension gradient δσ=(dσ/dT)δT that will drive a thermal-capillary or a Marangoni

flow in the bulk of both fluids [6, 7, 8]. Such a flow could modify the shape of the bubble.

We have previously seen Marangoni rolls in similar cells in the same apparatus in ground

based experiments using the shadowgraph effect. These rolls have a horizontal width of the

order of the cell thickness and are transient. They form near the gas-liquid interface after a

large temperature quench and travel along the horizontal interface for several seconds before

disappearing. One of us (J.H.) has also seen similar shadowgraph images of sustained

Maranogoni convection in evaporating methanol along a thin horizontal interface in similar
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geometry verifying that the transient rolls are Marangoni rolls, probably also driven by

evaporation. We have not seen any evidence of the steady convection that is required to

create and maintain the observed bubble shape in our experiments. We have, however, on

occasion seen transient plumbs in some experimental runs from bubble coalescence but

these events only had a small transient influence on the bubble shape. The fact that there is

no convection farther away from the critical point shows that the interface is isothermal.

This may not necessarily be true closer to the critical point. The dimensionless parameter

that governs the stability of an isothermal interface, in the presence of an externally imposed

temperature gradient normal to the interface, is the Marangoni number given by

Ma=δσL/(ηDth). L is the characteristic length over the distance that σ varies by δσ.,η, and

Dth are the viscosity, and the thermal diffusivity respectively. This number is the ratio of the

surface tension driving force to the viscous dissipation force so that if this number is larger

than ~100 a stationary interface becomes unstable to surface tension driven flow. Close to

the critical point the surface tension vanishes with the universal form σ=σo (TC-T)2ν, where

ν=0.63 is a universal exponent,  δσ=-2υσ o(TC-T)2ν-1 δT(x)~ (TC-T)0.26δT(x). The Dth factor

in the denominator of Ma disappears with the form Dth ~(TC-T)0.85[9] so that Ma has the

form Ma ~(TC-T)-0.59 that diverges as T → TC. We note, however, that we do not have an

externally imposed temperature gradient that corresponds to the classical Marangoni

instability problem. A temperature gradient across the interface driven by evaporative heat

transfer would tend to equilibrate any δT(x) to maintain a uniform saturation pressure in the

cell, i.e., local temperature perturbations away for an isothermal interface would be strongly

dampened by evaporation. Even far from saturation an evaporating interface tends to a

uniform temperature through convective heat transport in the absence of an externally

impose temperature gradient, as observed in Reference [7]. In addition, the strength of any

possible surface tension driven convection is measured by the characteristic velocity
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U~δσ/η. This velocity goes to zero near TC as U~ (TC-T)0.26. Very close to the critical point,

the velocity of the flow produced by a possible δT(x) is probably too small to observe and

certainly too small to drive the large bubble distortions that we have observed.

a

b

Figure 4. The bubble in equilibrium. a) Comparison of a 3-D numerical simulation of the

equilibrium bubble shape with an actual image of the bubble. The window tilt angle input

to the simulation is 0.30. b) Diagram showing the forces on the bubble in equilibrium.
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We next discuss the possible influence of the window tilt on the bubble shape. We

first note that there are several important constraints present in our system. A liquid-gas

mixture in coexistence has a specific volume fraction for gas given by the lever rule. The

zero contact-angle results in principal axes of curvature that are parallel to the cylinder axis

so that the edge of the bubble in Figure 3 appears to be a dark thick line. These principal

axes are oriented in a direction normal to this thick line. These regions of curved liquid-gas

interface not in contact with the wall have a Laplace pressure p=σc at each element of free

interface. Because both p and σ are constant on the interface c is also constant at each point

in this region. We have computed the initial equilibrium bubble shape by minimizing the

system's free energy as shown in Figure 4a. This calculation used the Surface Evolver

software the employs the finite element method. We used a zero contact angle and a window

tilt of 0.30. This calculation matches the initial bubble shape, verifies that the bubble is

touching the side-wall, and verifies that the window tilts are the cause of this initial shape.

To gain some qualitative understanding of this initial bubble shape we consider the forces

on the bubble and the condition of mechanical equilibrium. The slight tilt of the windows

about a tilt axis parallel to x by an angle θ makes a net reaction force from the windows in

the (-y) direction, as shown in Figure 4b. The rotational symmetry that the bubble would

have with parallel windows is broken in to a discrete reflection symmetry as the bubble

changes from a circular cross section in the (x, y) plane to an oval cross section. We first

reduce this problem to 2-D by integrating along all of the principal axes of the interface

parallel to z to get net forces in the (x, y) plane as shown in Figure 4. The y-axis is in the

reflection symmetry plane of the bubble (also the plane of maximum tilt that defines θ) and

all of the x-components of any normal or interfacial stress cancel by this reflection

symmetry. At each element of the bubble between x and x+dx there are several y-
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components of force. There is the y-component of the free interface, FfIcosφ, that pushes in

the (-y) direction, where FfI=σL and L is the distance between the windows that depends on

the shape of the bubble, y(x). The flat tilted windows also produce a force, FW, that pushes

in the (-y) direction that is equal to ∫psin(θ/2)dy. The limits depend on the shape of the

region in contact with the window that is parallel to the y-axis, l(x). Below the x-axis there

are several forces that push the gas in the bubble in the (+y) direction. The part that is not

pinned by the wall has a (+y)-component to FfIcosφ. The large curvature varies more

strongly in this edge region of the bubble and the small curvature is also varying

considerably in order to maintain the constant curvature condition. The part of the interface

pinned by the wall has both normal and interfacial forces that all push toward the center of

the cell. The dark line corresponding to the interface is concentric with the cell radius so its

large curvature principal axis passes through the cylinder axis. The thickness of this dark

line is less than it would be if it were not pinned by the side-wall implying that ξ, as defined

in Figure 4b, is constant as we have also seen in the numerical simulation. This pinned

interface produces a force FpI of constant magnitude that points toward the cell's center at

each dx. This force is σscosφ', where s is the length associated with the integration and φ'

is the angle between the cell radius and the y-axis. There is also a normal force N=pξ on the

bubble from the side-wall wall region that is in contact with the bubble, as shown in Figure

4. Because the higher pressure in the bubble is caused by this Laplace pressure, p=σc, all

of the above forces are proportional to σ. All of these forces must also integrate to zero so

that a constant σ on the isothermal interface factors out of the mechanical equilibrium

condition and the bubble shape depends only on geometrical factors. The bubble shape

should therefore also be independent of temperature. Although the window tilt and the

constraining walls play an important roll in defining the boundary conditions and position
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of the bubble they can not be the cause of the bubble deformation that we have observed.

As σ(T) decreases when the bubble is heated, all the forces on the bubble decrease

proportionately, i.e., bubble become more easily deformed but the reaction forces from the

window tilt also decreases as the Laplace force decreases. We also note that in some

experiments where temperature was raised by steps and allowed to equilibrate between

them, the bubble returned to its initial shape. We conclude that an external force is applied

to this system as the heating is applied and the temperature is increased.

When very close to the critical point the vapor bubble looses its convexity and

rapidly evolves, as shown in images D-H of Figure 3. As shown above, convective transport

of heat can not equilibrate the interface temperature. The other possible modes of heat

transport are also very inefficient as T → TC. Temperature diffusion becomes small because

Dth  ~(TC-T)0.85 → 0 as T → TC, the latent heat also goes to zero as (TC-T)β where β=0.325.

In our experiment the cell is heated past TC, so the possibility of δT(x) along the interface

increases close to TC. There is, however, a very efficient heat transfer process close to the

critical point. This process is an adiabatic heat transfer process caused by the diverging

compressibility and thermal expansion coefficient particular to near critical fluids [10]. The

large thermal expansion and the slow diffusive transport of thermal energy in a near critical

fluid lead to a low-density thermal boundary layer near the heating walls. These expanded

boundary layers compress the bulk fluid, heating it adiabatically. In a liquid-gas mixture,

the compression by the boundary layer may heat the gas more than the liquid, leading to a

quite large temperature difference [11]. Recently, in fact, it has been observed that when a

two-phase system's temperature is quenched upward, the gas temperature may actually

exceed the wall temperature [12]. Close to the critical point, a temperature change, δT(x),

where x is a position at the interface, could change the bubble’s shape by producing surface

tension change, δσ, on the interface. After the cell heating is started, the bubble deforms and
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the Laplace formula becomes p =σ(x)c(x)=constant. We write p=pc+δp to separate the bulk

pressure from the pressure caused by local variations of σ(x) and c(x). These quantities are

also separated into local and bulk parts, i.e., c(x)=c +δc(x) and σ(x)= σ +δσ(x). Canceling

the bulk part we find that δc =(δp/δσ - c)/( σ/δσ +1). Because σ/δσ →0 as T → TC, the ratio

δp/δσ determines the near critical behavior of δc. δp/δσ measures the uniform pressure

change when a surface tension change occurs and it is clear that δp→0 as δσ→0 (i.e. T →

TC). Near TC the ratio δp/δσ may either i) diverge, ii)converge to a constant, or iii) converge

to zero. In case i) we find that δc ~δp (TC-T)1-2ν as T → TC so that the critical exponent for

a curvature divergence would be weaker than 1-2ν≈-0.26. Such a divergence of curvature

probably occurred near the copper side-wall. We have seen something quite opposite in that

the interface appears to flatten away from the side-wall in some parts of images F and G of

Figure 3. This implies either that there is no curvature divergence (cases ii) and iii) )or there

is noδT(x) along the interface in this region. On the other hand, if δp/δσ → c0= constant

(case ii) or δp/δσ → 0 (case iii) as T → TC, then c(x) →  c0  or 0 as T → TC, i.e., a region of

interface with a local change in temperature goes to this curvature value (case ii) or becomes

flat (case iii)) near the critical point. In cases ii) and iii) a δT(x) along the interface could

help to explain these images. At T ≥ TC, the surface tension vanishes, the bubble's relaxation

from surface tension is negligible, so that the “interface” shape is defined by local mass

fluxes. In this case the interface evolution is analogous to the melting of a liquid-solid

interface.

We next analyze another possible source of bubble deforming stress for an

isothermal interface. The bubble may be deformed through the process of evaporation, i.e.,

by the normal stress exerted on the interface by the recoil from departing vapor [13,14]. Let

n be the evaporating mass per unit time per unit interface area. The evaporating gas moves
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normally to the interface, on average, and exerts a force per unit area  (a « thrust ») on the

liquid of δp(x)=n2(x)(1/ρG-1/ρL), where ρ  denotes mass density and the subscripts L and

G refer to liquid and gas respectively. In order to find the distribution n(x) at the interface

it is necessary to solve the entire heat transfer problem and this problem is complicated by

the adiabatic heat transfer process. Because the temperature varies sharply in the boundary

layer adjacent to the walls of the cell [10], the largest portion of mass transfer across the

interface takes place near the triple contact line so that n(x) is large in the vicinity of the

contact line. A more detailed analysis [15] shows that n(x) can exhibit a logarithmic

divergence at the contact line decreasing exponentially far from it. We assume that n(x) has

the following form: n(x)=g(x)(TC-T)a as T → TC, i.e., it has the same local behavior with

respect to temperature as the critical temperature is approached. The rate of change of mass

of the vapor bubble is dM/dt=∫ n(x)dx=d/dt(VϕρG), where the integral is over the interfacial

area, V is the cell volume, and ϕ is the constant vapor volume fraction (ϕ  is the ratio of the

gas volume to the total volume, ϕ=1/2 when the  average density is the critical density ρc).

Near the critical point the co-existence curve has the form ρG=ρc - ∆ρ/2, where ∆ρ~(TC-T)β

with β=0.325, so that dM/dt ~(TC - T)β-1 dT/dt as T → TC. Thus a=β-1 and the curvature

change due to the vapor recoil scales as δc~δp/σ~(TC-T)3β-2-2ν. Because this critical exponent

(≈-2.3) is very large, it should manifest itself even far from the critical point in agreement

with the experiments. This divergence is also much larger than the possible curvature

divergence from a surface tension gradient. In summary, as T→TC, the vapor mass growth

follows the growth of its density (the vapor volume remains constant), so that the diverging

vapor production near the critical point drives a diverging recoil force.

The shape of the interface is governed by the equation δp(x)+pc = c(x)σ. Because

c is proportional to the second derivative of the bubble shape, this governing formula is a
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differential equation with the boundary condition given by the actual contact-angle. This

actual contact-angle is the first derivative of the bubble shape function at the solid wall and

is zero near the critical point. This problem can be reduced to 2-D as in the equilibrium case

and we solved it using an expression for δp(x) that contains the main physical features of

the solution of the heat conduction problem [15] (the logarithmic divergence at the contact

line and the rapid decay away from it). The influence of the vapor recoil force relative to the

surface tension is measured using a non-dimensional parameter N, defined as N = ∫δpdl/σ

where the integration is performed over the drop contour perpendicular to the contact line.

Figure 5 shows how the apparent contact-angle increases with the increase of N. Because

N ~ (TC - T)-2.3→ ∞ as T → TC, the N increase mimics the approach to the critical point and

qualitatively explains the observed shape of the vapor bubble. The large apparent contact-

angle can be understood by noting that the curvature increases sharply near the contact line.

Because the interface slope changes so abruptly near the contact line, the contact-angle

appears much larger than zero, as can be seen in Figure 5. In other experiments [16] under

weightless conditions a similar drying process can be seen in the bubble images. Multiple

bubble interactions and a small cell aspect ratio, however, complicated these experiments.

A very similar drying takes place during the liquid boiling process at large heat flux.

When the heating to a surface is increased past a critical heat flux there is a sudden

transition to "film" boiling, where the heater becomes covered with gas and may burnout

[14, 15]. This  ''burnout'' or ''boiling crisis'' is an important practical problem in many

industries.  We interpret the boiling crisis to be similar to the drying transition shown here

[15]. Recent numerical calculations also support this interpretation [17]. The main

difference is that the large value of N is made by a large vapor production that can be

achieved during strong overheating rather than by the critical effects.



16

ACKNOWLEDGEMENTS

This work was supported by CNES and NASA. We thank all of the Alice II team, especially

J. F. Zwilling, and all individuals involved in the Mir missions for their technical support.

V.N. thanks all of the staff of the Department of Physics at UNO for their hospitality.

Figure 5. Calculated contact angle and bubble shape. The calculated shape of the vapor-

liquid interface as described in the text for the different values of the non-dimensional

strength of vapor recoil N that goes to infinity when the system approaches the critical point.

Note that the actual contact angle is zero for all the curves.
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